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A new numerical method, which is based on the coupling between variational multiscale
method and meshfree methods, is developed for 2D Burgers’ equation with various values
of Re. The proposed method takes full advantage of meshfree methods, therefore, no mesh
generation and mesh recreation are involved. Meanwhile, compared with the variational
multiscale finite element method, a strong assumption, that is, the fine scale vanishes iden-
tically over the element boundaries although non-zero within the elements, is not needed.
Subsequently two problems which have an available analytical solution of their own are
solved to analyze the convergence behaviour of the proposed method. Finally a 2D Burgers’
equation having large Re is solved and the results have also been compared with the ones
computed by two other methods. The numerical results show that the proposed method
can indeed obtain accurate numerical results for 2D Burgers’ equation having large Re,
which does not refer to the choice of a proper stabilization parameter.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The Burgers’ equation is a useful model for many interesting physical problems, such as shock wave, acoustic transmis-
sion, traffic and aerofoil flow theory, turbulence and supersonic flow as well as a prerequisite to the Navier–Stokes equations.
This equation can be considered as an evolutionary process in which a convective phenomenon is in contrast with a diffusive
phenomenon. When diffusive phenomenon is dominative, the Burgers’ equation is parabolic, or else it is hyperbolic. That is
to say, this equation usually exhibits a ‘‘mixed” property. Although there are some analytic solutions available in the liter-
atures [1,2], the exact solutions for the practical applications are very limited due to the complex geometry and complicated
initial and boundary conditions. Therefore, various kinds of numerical methods are proposed for the Burgers’ equation. In
general, these methods fall into the following classes: finite difference method (FDM) [3,4], finite volume method (FVM)
[5–7], finite element method [8,9], boundary element method (BEM) [10] and so on. However, among the methods men-
tioned above, the large amount of efforts should be paid during the numerical implementation, which makes these conven-
tional numerical methods very difficult to efficiently deal with the Burgers’ equation, especially for treating the nonlinear,
multidimensional flows and irregular domain problems.

Recently, the developments of the so-called meshfree or meshless methods have caught the researchers’ attentions. This
kind of methods only use a set of nodes scattered within the problem domain as well as a set of nodes scattered on the
boundary, therefore, they have many advantages over the conventional numerical methods. At present, there are many
meshfree methods such as element-free Galerkin (EFG) method [11–13], meshless local Petrov–Galerkin (MLPG) method
[13], reproducing kernel particle method (RKPM) [11] and so on. Applying meshfree methods to solve the Burgers’ equation,
. All rights reserved.
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there are the following papers which can be referred to. Ouyang et al. [14] developed a series of non-standard element-free
Galerkin methods to solve 1D and 2D Burgers’ equation. But among these methods, the choice of a proper stabilization
parameter is difficult. Young et al. [15] applied the Eulerian–Lagrangian method of fundamental solutions (ELMFS) to solve
2D Burgers’ equation. Zhang et al. [16] combined the characteristic Galerkin (CG) method with EFG to solve 1D and 2D Bur-
gers’ equation.

In the mid-90s Hughes revisited the origins of the stabilization schemes from a variational multiscale view point and pre-
sented the variational multiscale (VM) method [17,18]. In this method the different stabilization techniques come together
as special cases of the underlying subgrid scale modeling concept. As to the aspect of the research in which VM was com-
bined with FEM, Masud et al. developed multiscale/stabilized formulations for the linearized incompressible Navier–Stokes
equations [19], the advection–diffusion equation [20], the convective–diffusive heat transfer [21], the Darcy flow equation
[22], the Fokker–Planck equation [23], and Franca et al. proposed a two-level finite element method for the convection–dif-
fusion problem [24] as well as the incompressible Navier–Stokes equations [25] and so on. However, among these studies,
there is a main assumption that the fine scale vanishes identically over the element boundaries although non-zero within the
elements. Hughes [17] regarded that this was a rather strong assumption, and there would be many cases of practical inter-
est in which this assumption would be invalid. In addition, as to the aspect of the research in which VM was combined with
meshfree methods, Zhang et al. [26–28] followed the idea of the variational multiscale finite element method (VMFEM) and
proposed the variational multiscale EFG (VMEFG) method and the two-level EFG method respectively for some benchmark
problems in the field of fluid as well as magnetic field. However, they still assumed that the fine scale vanished identically
over the element boundaries although non-zero within the background integral elements, which should not be suitable. Be-
sides the research of Zhang, Yeon et al. [29,30] also combined VM and meshfree methods for the analysis of softening elas-
toplastic solids.

In order to take full advantage of meshfree methods and avoid the strong assumption mentioned above, the paper pro-
poses a new coupling between VM and meshfree methods for 2D Burgers’ equation. An outline of the paper is as follows:
Section 2 presents the moving least squares (MLS) approximation. Emphasis in the paper is the description of the variational
multiscale element-free Galerkin method, which is presented in Section 3. Section 4 presents the numerical results, and con-
clusions are drawn in Section 5.
2. The moving least squares approximation

According to the moving least squares interpolant [11,12], a local approximation uhðxÞ to the function uðxÞ in the domain
Xx of influence of node x can be defined by
uhðxÞ ¼
Xm

i¼1

piðxÞaiðxÞ ¼ pTðxÞaðxÞ; ð1Þ
where pðxÞ is a complete polynomial basis of arbitrary order and aðxÞ is a coefficient needed to be determined, which as indi-
cated, is the function of the space coordinate x. For the sake of simplicity, linear basis is chosen.

Assume that we have known the nodal value uI ¼ uðxIÞ for the function uðxÞ at N nodes xI (I = 1,2, . . . ,N) in the domain X.
Then the unknown coefficient aðxÞ in Eq. (1) is obtained at any point x by minimizing the following weighted, discrete error
norm
J ¼
XN

I¼1

wðx� xIÞ½pTðxIÞaðxÞ � uI�2; ð2Þ
where wðx� xIÞ is a weight function of compact support (often called the domain of influence of node I). The choice of the
weight function is more or less arbitrary, and the spline function is often used in practice together with the exponential func-
tion. In the paper the following cubic spline function is chosen
wðzÞ ¼

2
3� 4z2 þ 4z3

4
3� 4zþ 4z2 � 4

3 z3

0

8><>:
0 6 z 6 0:5;
0:5 < z 6 1;
otherwise;
in which z ¼ jx� xIj=r and r denotes the influence radius of node xI .
Minimization of Eq. (2) with respect to aðxÞ then yields the following system of linear equations for the coefficient aðxÞ:
AðxÞaðxÞ ¼ BðxÞu;
where A(x) and B(x) can be easily obtained from Eq. (2), and u is the vector of nodal unknowns. If A is invertible, the coef-
ficient aðxÞ can be expressed as
aðxÞ ¼ A�1ðxÞBðxÞu:
Substituting the above equation back into Eq. (1) leads to
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uhðxÞ ¼ pTðxÞA�1ðxÞBðxÞu ¼ uTðxÞu;
where the shape function of the EFG method is given by
uTðxÞ ¼ pTðxÞA�1ðxÞBðxÞ: ð3Þ
The MLS approximation is obtained by a special least squares method, thus the function obtained by the MLS approximation
is smooth curve and it does not pass through the nodal values. Therefore, the MLS shape function does not, in general, satisfy
the Kronecker delta condition at each node, i.e.
uiðxjÞ – dij;
where uiðxÞ is the i-component of uTðxÞ. This brings great difficulties in exerting Dirichlet boundary condition. Today there
have existed many techniques to resolve this problem, such as Lagrange multiplier approaches [11], penalty methods [11],
modified variational principles [31], perturbed Lagrangian [32], coupling to finite elements [33] and so on. Among them pen-
alty methods are adopted in the paper.
3. The variational multiscale element-free Galerkin method

3.1. The 2D Burgers’ equation

The unsteady 2D Burgers’ equation considered in the paper is defined over the square domain X ¼ ½0;1� � ½0;1�, and de-
scribed by the coupled equations as follows:
@u
@t
þ u

@u
@x
þ v @u

@y
¼ 1

Re
@2u
@x2 þ

@2u
@y2

 !
; ð4:aÞ

@v
@t
þ u

@v
@x
þ v @v

@y
¼ 1

Re
@2v
@x2 þ

@2v
@y2

 !
; ð4:bÞ
where u and v are the velocity along x-axis and y-axis respectively, Re is the Reynolds number. Here the following initial and
boundary conditions are assumed:
uðx; y;0Þ ¼ sinðpxÞ cosðpyÞ; vðx; y;0Þ ¼ cosðpxÞ sinðpyÞ; ð5Þ
uð0; y; tÞ ¼ uð1; y; tÞ ¼ 0; vðx; 0; tÞ ¼ vðx;1; tÞ ¼ 0; ð6Þ
@u
@n
ðx;0; tÞ ¼ @u

@n
ðx;1; tÞ ¼ 0;

@v
@n
ð0; y; tÞ ¼ @v

@n
ð1; y; tÞ ¼ 0: ð7Þ
For the 2D Burgers’ equation mentioned above, there are various symmetries:
uðx; y; tÞ ¼ vðy; x; tÞ; uðx; y; tÞ ¼ �uð1� x;1� y; tÞ:
Due to uðx; y; tÞ ¼ vðy; x; tÞ, we think that the unknown variables contained in Eq. (4.a) are just about u, and then Eq. (4.a) can
be solved independently. The same thing also happens to Eq. (4.b).
3.2. The standard weak form

Let V � H1ðXÞ \ C0ðXÞ denote the space of trial solutions and weighting functions for the unknown variables. The weak
form is obtained by multiplying the governing equation with an admissible weighting function and integrating it over the
domain. For Eq. (4.a), the standard weak form is as follows:
w;
@u
@t

� �
þ w;a � ruð Þ þ rw;

1
Re
ru

� �
¼ 0; ð8Þ
where a ¼ ðu;vÞ, w is the weighting function for u, and ð�; �Þ ¼
R

Xð�ÞdX is the L2ðXÞ inner product.
3.3. Multiscale decomposition and the multiscale variational problem

We assume that the scalar field can be decomposed into the coarse scale and the fine scale, namely,
u ¼ �uþ û; ð9Þ
where �u and û are the coarse and fine scale parts, respectively. Subsequently, the trial function spaces of each scale are de-
fined as
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�U ¼ uju 2 H1ðXÞ;u ¼ g at Cu

n o
; �u 2 �U;

Û ¼ uju 2 H1ðXÞ;u ¼ 0 at Cu

n o
; û 2 Û;

U ¼ �U � Û;
where the function g is displacement boundary condition which is prescribed on smooth boundary Cu and equals to zero (see
Eq. (6)) in the paper.

Likewise, test function can be also written in the decomposed form as follows:
w ¼ �wþ ŵ; ð10Þ
where �w and ŵ are the coarse and fine scale parts, respectively. We can define test function spaces of each scale as follows:
V ¼ wjw 2 H1ðXÞ;w ¼ 0 at Cu

n o
; �w 2 V ;

bV ¼ wjw 2 H1ðXÞ;w ¼ 0 at Cu

n o
; ŵ 2 bV ;

W ¼W � cW :
After taking backward Euler as time discretization for Eq. (8) and linearization, we substitute the trial solutions Eq. (9) and
the weighting functions Eq. (10) into the standard variational form to get
�wþ ŵ;
�unþ1 þ ûnþ1

Dt

� �
þ �wþ ŵ;an � r �unþ1 þ ûnþ1� �� �

þ r �wþ ŵð Þ; 1
Re
r �unþ1 þ ûnþ1� �� �

¼ �wþ ŵ;
un

Dt

� �
; ð11Þ
where n and n + 1 are used to denote two adjacent time points with time-step Dt ¼ tnþ1 � tn;an ¼ ðun;vnÞ, un ¼ �un þ ûn.
Employing the linearity of the weighting function slot, we can split Eq. (11) into the coarse and the fine scale parts, indi-

cated as W and cW respectively.
W : �w;
�unþ1 þ ûnþ1

Dt

� �
þ �w;an � r �unþ1 þ ûnþ1� �� �

þ r �w;
1
Re
r �unþ1 þ ûnþ1� �� �

¼ �w;
un

Dt

� �
; ð12Þ

cW : ŵ;
�unþ1 þ ûnþ1

Dt

� �
þ ŵ;an � r �unþ1 þ ûnþ1

� �� �
þ rŵ;

1
Re
r �unþ1 þ ûnþ1
� �� �

¼ ŵ;
un

Dt

� �
: ð13Þ
Rearranging Eqs. (12) and (13) respectively, we have
W : �w;
�unþ1

Dt

� �
þ �w;an � r�unþ1� �

þ r �w;
1
Re
r�unþ1

� �
¼ �w;

un

Dt

� �
� �w;

ûnþ1

Dt

� �
� �w;an � rûnþ1� �

� r �w;
1
Re
rûnþ1

� �
;

ð14Þ

cW : ŵ;
ûnþ1

Dt

� �
þ ŵ;an � rûnþ1� �

þ rŵ;
1
Re
rûnþ1

� �
¼ ŵ;

un

Dt

� �
� ŵ;

�unþ1

Dt

� �
� ŵ;an � r�unþ1� �

� rŵ;
1
Re
r�unþ1

� �
:

ð15Þ
Remark. In VMFEM, the bounded domain X is discretized into non-overlapping regions Xe (element domains) with
boundaries Ce, e = 1,2, . . . ,N. During the decomposition of the scalar field into the coarse scale and the fine scale, people
generally make an assumption that the fine scale vanishes identically over the element boundaries although non-zero within
the elements, namely,
û ¼ ŵ ¼ 0 on C0;
where C0 ¼ [
N

e¼1
Ce ðelem:boundariesÞ. However, Hughes [17] regarded that this was a rather strong assumption, and there

will be many cases of practical interest in which this assumption will be invalid. As far as the method presented in the paper
is concerned, we can see that this assumption is not needed at all.
3.4. The fine scale approximation

In order to obtain the fine scale approximation, the knowledge about the partition of unity (PU) has been used [34–37].
The basic idea consists in the use of partition of unity functions (PU functions), a set of functions whose sum equals to the
unity on the whole domain. Consider a set of functions f/ig and a domain X covered with a set of open domains fXig such
that
suppð/iÞ ¼ Xi;

8x 2 X;
X

i

/i ¼ 1;
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where suppð/iÞ denotes the support of definition of the function /i. This set of functions f/ig defines the partition of unity
attached to the patch fXig. We now consider the space of local approximation function Vj

i (local enrichment basis) defined on
Xi :
v iðXiÞ ¼ span Vj
i

n o
:

The space of functions used for the approximation is obtained by the product of the PU functions and the local approximation
functions
vðXÞ ¼ spanf/iV
j
ig;
where spanf/iV
j
ig denotes the space of functions generated by the set of function /iV

j
i . Each node has several degrees of free-

dom (one per function Vj
iÞ and the approximation of the displacement field at point x is given by
uhðxÞ ¼
X

i

X
Vj

i
2v i

/iV
j
iðxÞui;j: ð16Þ
An existing theorem (Babuška and Melenk, 1997) shows that if local approximation spaces have a convergent approximation
property of a given function on Xi, then PU method space also has a convergent approximation property on X.

For a typical open domain Xi, local enrichment basis Vj
i may adopt the polynomial basis functions or any other analytical

basis functions. Very often, the polynomial basis functions are used. In the following, some polynomial basis functions are
presented [34].

First order (p = 1):
fVj
ig ¼ fV

1
i g ¼ f1g in 1D;

fVj
ig ¼ fV

1
i g ¼ f1g in 2D:

Second order (p = 2):

Vj
i

n o
¼ V1

i ;V
2
i

n o
¼ 1; ðx� xiÞ2
n o

in 1D;

Vj
i

n o
¼ V1

i ;V
2
i ;V

3
i

n o
¼ 1; ðx� xiÞ2; ðy� yiÞ

2
n o

in 2D:

Third order (p = 3):

fVj
ig ¼ fV

1
i ;V

2
i ;V

3
i g ¼ 1; ðx� xiÞ2; ðx� xiÞ3

n o
in 1D;

Vj
i

n o
¼ V1

i ;V
2
i ;V

3
i ;V

4
i ;V

5
i ;V

6
i ;V

7
i

n o
¼ 1; ðx� xiÞ2; ðy� yiÞ

2
; ðx� xiÞ3; ðx� xiÞ2ðy� yiÞ; ðx� xiÞðy� yiÞ

2
; ðy� yiÞ

3
n o

in 2D:

Fourth order (p = 4):

Vj
i

n o
¼ V1

i ;V
2
i ;V

3
i ;V

4
i

n o
¼ 1; ðx� xiÞ2; ðx� xiÞ3; ðx� xiÞ4
n o

in 1D;

Vj
i

n o
¼ V1

i ;V
2
i ;V

3
i ;V

4
i ;V

5
i ;V

6
i ;V

7
i ;V

8
i ;V

9
i ;V

10
i ;V

11
i ;V

12
i

n o
¼ 1; ðx� xiÞ2; ðy� yiÞ

2
n

ðx� xiÞ3; ðx� xiÞ2ðy� yiÞ; ðx� xiÞðy� yiÞ
2
; ðy� yiÞ

3
; ðx� xiÞ4;

ðx� xiÞ3ðy� yiÞ; ðx� xiÞ2ðy� yiÞ
2
; ðx� xiÞðy� yiÞ

3
; ðy� yiÞ

4
o

in 2D:

It is worth noting that the linear terms x, y and xy are excluded from the above lists. Inclusion of those linear terms in the
polynomial often leads to some computational problems. Detailed discussion could be found in Ref. [38,39].

It should be pointed out that the set of EFG shape functions obtained by Eq. (3) belongs to PU functions, and if the poly-
nomial basis functions are adopted as local enrichment basis Vj

i, then we can obtain one kind of expression form for Eq. (16).
In order to state the following process simply, here the second order polynomial basis functions in 2D are used; other poly-
nomial basis functions follow the same way. Therefore, we have
uhðxÞ ¼
X

i

/i ui;0 þ ðx� xiÞ2ui;1 þ ðy� yiÞ
2ui;2

� �
; ð17Þ
where /i is the EFG shape function. Rearranging Eq. (17), we obtain
uhðxÞ ¼
X

i

/iui;0 þ
X

i

/iðx� xiÞ2ui;1 þ
X

i

/iðy� yiÞ
2ui;2: ð18Þ
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Compared with the approximation of classical EFG method, Eq. (18) has two more terms. Here we regard that the approx-
imation of classical EFG method is coarse scale approximation and the added terms as a whole is fine scale approximation.
Therefore, the coarse scale and the fine scale parts are descried respectively as follows:
�u ¼
X

i

/iui;0; ð19Þ

û ¼
X

i

/iðx� xiÞ2ui;1 þ
X

i

/iðy� yiÞ
2ui;2: ð20Þ
Substituting Eqs. (19), (20) into Eqs. (14), (15), we will finally get the matrix form for W and cW , respectively.
W : Knþ1
1

h i
�unþ1� 	

¼ Fn
1

� 	
þ F2 ûnþ1� �� 	

; ð21Þ

cW : Knþ1
2

h i
ûnþ1
� 	

¼ Fn
3

� 	
þ F4 �unþ1

� �� 	
: ð22Þ
Here, matrix Knþ1
1

h i
is obtained from left-hand side of Eq. (14), vector F2 ûnþ1

� �� 	
from the right-hand side terms that contain

ûnþ1, and Fn
1

� 	
from the rest. Similarly, matrix Knþ1

2

h i
is obtained from left-hand side of Eq. (15), vector F4 �unþ1

� �� 	
from the

right-hand side terms that contain �unþ1, and Fn
3

� 	
from the rest.

Introducing w;vð Þ� ¼ w; v
Dt

� �
þ w;an � rvð Þ þ rw; 1

Rerv
� �

, we have
Knþ1
1

h i
¼

..

. ..
. ..

.

..

.
/i;/j

� �� ..
.

..

. ..
. ..

.

266664
377775

N�N

;

Knþ1
2

h i
¼

..

. ..
. ..

. ..
. ..

. ..
.

..

.
/iðx� xiÞ2;/jðx� xjÞ2
� �� ..

. ..
.

/iðx� xiÞ2;/jðy� yjÞ
2

� �� ..
.

..

. ..
. ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

. ..
.

..

.
/iðy� yiÞ

2
;/jðx� xjÞ2

� �� ..
. ..

.
/iðy� yiÞ

2
;/jðy� yjÞ

2
� �� ..

.

..

. ..
. ..

. ..
. ..

. ..
.

26666666666666664

37777777777777775
2N�2N

;

�unþ1
� 	

¼

..

.

unþ1
j;0

..

.

26664
37775

N�1

; ûnþ1
� 	

¼

..

.

unþ1
j;1

..

.

..

.

unþ1
j;2

..

.

266666666666664

377777777777775
2N�1

Fn
1

� 	
¼

..

.

/i;
un

Dt

� �
..
.

26664
37775

N�1

; F2 ûnþ1� �� 	
¼

..

.

� /i; ûnþ1
� ��

..

.

26664
37775

N�1

;

Fn
3

� 	
¼

..

.

/iðx� xiÞ2; un

Dt

� �
..
.

..

.

/iðy� yiÞ
2
; un

Dt

� �
..
.

2666666666666664

3777777777777775
2N�1

; F4 �unþ1� �� 	
..
.

� /iðx� xiÞ2; �unþ1
� ��

..

.

..

.

� /iðy� yiÞ
2
; �unþ1

� ��
..
.

2666666666666664

3777777777777775
2N�1

;

where N is the number of nodes, i ¼ 1;2; . . . ;N; j ¼ 1;2; . . . ;N.
In order to obtain the numerical results, the coarse scale problem Eq. (21) and the fine scale problem Eq. (22) must be

solved iteratively. The solution procedures are summarized as follows:
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(1) �unþ1;0 ¼ un ;
(2) Solve the fine scale problem by replacing the coarse variable �unþ1 in the right-hand side with �unþ1;i to determine ûnþ1;iþ1

;

cW : Knþ1;iþ1
2

h i
ûnþ1;iþ1� 	

¼ Fn
3

� 	
þ F4 �unþ1;i� �� 	

: ð23Þ
(3) Solve the coarse scale problem to determine �unþ1;iþ1 ;
W : Knþ1;iþ1
1

h i
�unþ1;iþ1� 	

¼ Fn
1

� 	
þ F2 ûnþ1;iþ1� �� 	

: ð24Þ
(4) Employ Eq. (18) to get unþ1;i
real and unþ1;iþ1

real , then compute error ¼max unþ1;iþ1
real � unþ1;i

real




 


 ;
(5) If error < 10�5, then let unþ1;iþ1 ! un; nþ 1! n and go to (1); else go to (2)

4. Numerical results

4.1. The analysis of the method

In order to analyze the convergence behaviour of the proposed method, we first apply the method to solve two problems
which have an available analytical solution of their own respectively. Although these two problems are the ones with con-
stant coefficients, the obtained conclusions can be used to instruct us how to apply the proposed method to solve the non-
linear problems, such as 2D Burgers’ equation.

4.1.1. Convection–diffusion problem
This problem simply consists of solving the following 1D boundary value problem
aux � muxx ¼ sðxÞ in ½0; L�;
u ¼ 0 at x ¼ 0 and x ¼ L;

�

with a constant source term s ¼ 1 in a dimensionless domain L ¼ 1. The exact solution to the above model problem is given
by
uðxÞ ¼ 1
a

x� 1� expðcxÞ
1� expðcÞ

� �
;

where c ¼ a
m. Additionally, in order to analyze the convergence rate of the proposed method, the following L2 error norm is

used as error measures:
ku� uhkL2 ¼
Z

X
u� uh
� �2

dX
� �1=2
and the corresponding L2 relative error norm ku� uhkrel
L2 ¼ ku� uhkL2=kukL2 is also introduced.

In the paper, we adopt a ¼ 1 and m ¼ 0:01. The numerical results are obtained on a uniform distribution of nodes. We dis-
tribute 31, 61 and 91 nodes in the domain 0; L½ � respectively, and different order of polynomial basis functions (p = 2,3 and 4
in 1D) are also adopted respectively. Additionally, 3 Gaussian quadrature points in each integral cell are used and the influ-
ence radius of node is set as 1:15Dx.

Due to that the numerical results with different order of polynomial basis functions (p = 2,3 and 4 in 1D) are almost the
same for the corresponding nodes, we only present the results with the polynomial basis functions p = 4 for different nodes.
Fig. 1 shows the comparison of the numerical results with exact solution for 31, 61 and 91 nodes respectively, and we can
observe that the numerical results agree well with the exact solution and the agreement becomes better with the increment
of nodes.

In order to study the convergence of the method, in Fig. 2 the L2 relative error norms are plotted with respect to the num-
ber of nodes and the order of polynomial basis functions respectively. From Fig. 2(a) we can know that with the increment of
nodes the L2 relative error norms become smaller, which is consistent with the error estimate theory. From Fig. 2(b) we can
observe that with the enrichment of polynomial basis functions the L2 relative error norms become smaller likewise. For the
less nodes (e.g. 31 nodes), when we enrich the polynomial basis functions from p = 2 to p = 3, the effect to improve the con-
vergence is evident. However, when we enrich the polynomial basis functions from p = 3 to p = 4, the effect to improve the
convergence is a little. The reason is that most of fine scale information has been captured by the additional terms of the
polynomial basis functions p = 3 compared with the polynomial basis functions p = 2, thus if we continue to enrich the poly-
nomial basis functions, less fine scale information will be captured. For the enough nodes (e.g. 61 nodes, 91 nodes), due to
that most of information has already been captured, the fine scale information left is little, so the effect to improve the con-
vergence is not evident by the enrichment of polynomial basis functions.

4.1.2. Convection–diffusion across a source term
The proposed method is also studied by introducing a source term to the previous example:



Fig. 3.
nodes (

Fig. 1.
nodes (
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aux � muxx ¼ 10e�5x � 4e�x for x 2 ½0;1�;
uð0Þ ¼ 0 and uð1Þ ¼ 1:

�

Introducing the following parameters:
Fig. 2. The rate of convergence about: (a) the number of nodes (b) the order of polynomial basis functions.

The numerical results of the proposed method with the polynomial basis functions p = 4 and exact solution for different nodes respectively: (a) 31
b) 61 nodes (c) 91 nodes.

The numerical results of the proposed method with the polynomial basis functions p = 4 and exact solution for different nodes respectively: (a) 31
b) 61 nodes (c) 91 nodes.
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c ¼ a
m
; C1 ¼

2
5þ c

; C2 ¼
4

1þ c
; C3 ¼

1
1� ec C1 � C2 � m� C1e�5 þ C2e�1� �

;

the exact solution can be given by
uðxÞ ¼ 1
m
�C1e�5x þ C2e�x þ C3ecx þ C1 � C2 � C3
� �

:

Fig. 5. The profiles of u velocity at different time for Re = 100 on 11 � 11 nodes.

Fig. 4. The rate of convergence about: (a) the number of nodes (b) the order of polynomial basis functions.
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Here, all the parameters are kept the same as those for the previous example. Following the same reason mentioned above,
we also only present the results with the polynomial basis functions p = 4 for different nodes. Fig. 3 shows the comparison of
the numerical results with exact solution for 31, 61 and 91 nodes respectively. Fig. 4 presents the L2 relative error norms with
respect to the number of nodes and the order of polynomial basis functions respectively. It is evident that the same conclu-
sions such as those in Section 4.1.1 can be drawn from Figs. 3 and 4.

4.2. The 2D Burgers’ equation

For 2D Burgers’ equation, when convection dominates the nonlinear transport, the solution includes the formation of a
discontinuity along the diagonal of the domain passing through the points (0,1) and (1,0). Here, we apply the proposed
Fig. 6. The profiles of u velocity at different time for Re = 100 on 21 � 21 nodes.

Fig. 7. The slice of u velocity passing through the points (0,0) and (1,1) for t = 1.0 when Re = 100.
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method with the polynomial basis functionsp = 2 to solve 2D Burgers’ equation for different nodes, due to that the additional
terms appeared in the higher order polynomial basis functions (p > 2) captures fine scale information little.
Fig. 8. The EFG’s results on 21 � 21 nodes for t = 0.6 and t = 0.8 when Re = 100.

Fig. 9. The profiles of u velocity at different time for Re = 500 on 41 � 41 nodes.



Fig. 10. The slice of u velocity passing through the points (0,0) and (1,1) for t = 1.0 when Re = 500.

Fig. 11. The profiles of u velocity at t = 1.0 for Re = 500: (a) WCM on 65 � 65 nodes (b) EFCG on 41 � 41 nodes (c) VMEFG on 41 � 41 nodes.
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The numerical results are obtained on a uniform distribution of nodes. We distribute 11� 11;21� 21 nodes respectively
for Re = 100, and 41� 41 nodes for Re = 500. 3� 3 Gaussian quadrature points in each integral cell are used and the influence
radius of node is set as 1:2Dx or 1:2Dy (Dx = Dy in the paper).
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Figs. 5 and 6 show the profiles of u velocity at different time for Re = 100 on 11� 11;21� 21 nodes, respectively. Fig. 7
presents the slice of Figs. 5 and 6 passing through the points (0,0) and (1,1) for t = 1.0. From Fig. 7 we can find that with the
increment of nodes, the profiles along the diagonal of the domain passing through the points (0,1) and (1,0) are captured
better. Fig. 8 presents the EFG’s results on 21� 21 nodes for t = 0.6 and t = 0.8 when Re = 100, in which the results are pol-
luted extremely by non-physical oscillations. This illustrates that our method can eliminate the non-physical oscillations
effectively.

Fig. 9 shows the profiles of u velocity at different time for Re = 500 on 41� 41 nodes, from which we can find that though
Re is much bigger, the results are polluted little by the non-physical oscillations. When Re = 500, Fig. 10 presents the slice of u
velocity passing through the points (0,0) and (1,1) for t = 1.0 on 21� 21;26� 26;31� 31;36� 36 and 41� 41 nodes respec-
tively. We can observe that the discontinuity can be captured better with the increment of nodes.

In order to decide whether our results are reliable and accurate, we compare them with the counterparts computed by
two other methods for t = 1.0 when Re = 500. First, the wavelet is characterized by multiresolution, thus we use the wavelet
collocation method (WCM) [40] to compute 2D Burgers’ equation of Re = 500 for supplying the reference results. Secondly,
the element-free characteristic Galerkin (EFCG) method [16] is based on characteristic Galerkin (CG) which is an effective
method to deal with the advection-dominated, thus we adopt EFCG as anther method to supply the reference results.

Fig. 11 shows the profiles of u velocity at t = 1.0 for Re = 500, which are computed by different methods: (a) WCM on
65 � 65 nodes (b) EFCG on 41 � 41nodes (c) VMEFG on 41 � 41 nodes. It should be noticed that in WCM the wavelet selected
is the Shanno wavelet and scale parameter J = 6, thus the number of nodes is ð2J þ 1Þ � ð2J þ 1Þ. Fig. 12 presents the compar-
ison among the results of these three methods, from which we can find that: (1) The WCM method captures the disconti-
nuity best in the interior of the domain, there is no oscillations appeared along the diagonal of the domain passing
through the points (0,1) and (1,0). However, the results on the Neumann boundary are worse, because it is difficult to exert
Fig. 12. The comparison of the results at t = 1.0 for Re = 500 among the methods: (a) WCM on 65 � 65 nodes (b) EFCG on 41 � 41 nodes (c) VMEFG on
41 � 41 nodes.

Fig. 13. The slice of u velocity at the section y = 0.5 for t = 1.0 when Re = 500 by different methods: (a) WCM on 65 � 65 nodes (b) EFCG on 41 � 41 nodes (c)
VMEFG on 41 � 41 nodes.



Fig. 14. The slice of u velocity at the section y = 0.5 for t = 1.0 when Re = 500 by different methods: (a) WCM on 65 � 65 nodes (b) EFCG on 61 � 61 nodes (c)
VMEFG on 61 � 61 nodes.
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this kind of boundary condition exactly. (2) When the same 41 � 41 nodes are adopted, the oscillations appeared in our re-
sults grow weaker than those appeared in EFCG’s results, which illustrates that our method is better than EFCG. Meanwhile,
unlike WCM, it is easy to exert the Neumann boundary condition exactly in our method.

Fig. 13 presents the slice of u velocity in Fig. 12 at the section y = 0.5, from which we can observe clearly that our method
is better than EFCG, though a little worse than WCM. Due to that 41 � 41nodes are much less than 65 � 65 nodes, thus we
compute the problem on 61 � 61nodes by our method and EFCG respectively. Fig. 14 shows the slice of u velocity at the sec-
tion y = 0.5, from which we can find that when the nodes nearly keep the same, our results almost overlap the WCM’s results
except a little oscillations.

Based on the comparison mentioned above, it should be seen that our proposed method is reliable and accurate for solv-
ing 2D Burgers’ equations.

5. Conclusions

A new numerical method, which is based on the coupling between VM and meshfree methods, is developed for the Bur-
gers’ equation in the paper. The proposed method avoids a strong assumption compared with VMFEM, that is, the fine scale
vanishes identically over the element boundaries although non-zero within the elements. Then two problems which have an
available analytical solution of their own are solved to analyze the convergence behaviour of the proposed method and fi-
nally a 2D Burgers’ equation having large Re is also solved. Numerical results show that: (1) the proposed method has the
ability to deal with the problem in which a convective phenomenon is dominative and at the same time it does not refer
to the choice of a proper stabilization parameter; (2) with the increment of nodes or the enrichment of polynomial basis
functions, the accuracy of results is improved; (3) most of fine scale information can be captured by the additional terms
of the polynomial basis functions p = 3 compared with the polynomial basis functions p = 2, thus if we continue to enrich
the polynomial basis functions, less fine scale information will be captured; (4) no mesh generation and mesh recreation
are involved, therefore, one can easily add or delete nodes in the desired regions. In a word, the proposed method is an
attractive approach to deal with nonlinear and high gradient problems. It is believed that this method will also be useful
for solving more general problems in fluid dynamics, and in the future we will apply this approach to solve more complex
fluid flow problems, such as Navier–Stokes problem and so on.
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